NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Thuyết tương đối cho mọi người

Tuyệt đối hay tương đối

Tác giả: Martin Gardner
Ads Top

Hai chàng thuỷ thủ là Jo và Mo, sau một tai nạn đâm tàu, đã dạt vào một hoang đảo. Nhiều năm trô một hôm Jo phát hiện ra một cái chai bị sóng đánh dạt vào bờ. Đó là cái vỏ chai còn đề nhãn bên dưới là “Coca – cola”, Jo tái mặt đi. – Này Mo – Anh ta kêu lên – Chúng ta đã bé đi biết bao nhiêu?

Từ câu nói vui đó có thể rút ra một bài học nghiêm túc, phán đoán về đối tượng bất kỳ không thể nào khác hơn là so sánh nó với kích thước của một đối tượng khác. Người Liliput xem người Gulivơ là khổng lồ. Đối với dân chúng vùng Bropdingơ thì người Gulivơ lại là loại chim chích. Vậy quả cầu là lớn hay nhỏ? Dường như nó là cực lớn so với nguyên tử, nhưng lại cực nhỏ so với trái đất.

Jun Andre Poangcare, nhà toán học nổi tiếng người Pháp thế kỷ XIX, trong khi tiên đoán nhiều luận điểm của thuyết tương đối đã đề cập vấn đề này như sau (các nhà khoa học gọi phương pháp của ông là phương pháp tiếp cận bằng tư duy thực nghiệm. Cũng tức là phép thực nghiệm suy tưởng nhưng không thực hiện được trên thực tế): Chúng ta cứ hình dung rằng, ông nói, vào ban đêm, khi chúng ta ngủ say, mọi thứ trong vũ trụ trở nên lớn gấp hàng ngàn lần trước đó. Ở đây, Poangcare muốn nói mọi thứ hiện hữu như điện tử, nguyên tử, độ dài sóng ánh sáng, bản thân chúng ta, cái giường ta nằm, căn nhà ta ở, trái đất, mặt trời và các vì sao. Bạn có thể sẽ nói rằng khi tỉnh giấc đã có điều gì đó xảy ra chăng? Có thể dẫn ra đây một thí nghiệm tưởng như chứng minh được rằng bạn đã thay đổi về kích thước?

– Không, Poangcare nói, một thí nghiệm như vậy là không thực hiện được. Thực vậy, vũ trụ dường như giống y hệt trước đó, thật là vô lý khi nói rằng vũ trụ đã trở nên lớn hơn. “Lớn hơn” điều đó có nghĩa là khác hơn đối với một vật khác. Trong trường hợp này không hề có vật nào khác cả. Cũng vô lý biết bao khi nói rằng toàn bộ vũ trụ đã co lại về kích thước.

Như vậy, kích thước là tương đối. Không có một phương pháp tuyệt đối xác định kích thước của một đối tượng nào đó và không thể nói rằng nó có một kích thước nào đó, hay một kích thước tuyệt đối nào đó. Có thể xác định kích thước bằng cách sử dụng những thước đo khác, ví như, thước đo độ dài hoặc thước mét. Nhưng thước mét có độ dài là bao nhiêu? Trước ngày 1 tháng giêng năm 1962, đơn vị mét được xác định là độ dài của một thanh platin xác định, được bảo quản ở nhiệt độ không đổi trong hầm ngầm Sevrơ thuộc nước Pháp. Từ ngày 1 tháng giêng năm 1962, tiêu chuẩn mới của mét là 1650763,73 độ dài của sóng ánh sáng màu da cam, kiểu xác định phát ra trong chân không bởi nguyên tử Kripton – 86. Tất nhiên, nếu hết thảy trong vũ trụ, kể cả độ dài sóng bức xạ đó tăng hoặc giảm theo một tỷ lệ nhất định, thì không một phương pháp thực nghiệm nào có thể nhận ra sự thay đổi đó.

Điều đó cũng đúng cả về mặt thời gian. Cần “nhiều” hay “ít” thời gian để trái đất quay một vòng quanh mặt trời? Đối với một em bé, thời gian từ năm mới này sang năm mới khác dường như là vô tận. Còn đối với nhà địa chất quen tính toán thời gian hàng triệu năm thì một năm chỉ giống như một nháy mắt. Khoảng thời gian cũng tính như khoảng cách không thể đo bằng cách nào so sánh nó với một khoảng thời gian khác. Một năm được xác định bằng thời gian trái đất quay xung quanh mặt trời, ngày là thời gian cần thiết để trái đất quay một vòng quanh trục của nó. Giờ là thời gian chiếc kim lớn của đồng hồ quay được một vòng. Luôn có một khoảng thời gian được đo bằng cách so sánh nó với khoảng thời gian khác.

G. Well có viết một truyện khoa học viễn tưởng nổi tiếng có nhan đề là Máy gia tốc mới, trong đó có thể rút ra chỉ một bài học từ một câu nói đùa về hai chàng thuỷ thủ, song bài học không đụng chạm đến không gian, mà là đến thời gian. Một nhà bác học phát minh ra phương pháp tăng tốc mọi quá trình diễn ra trong cơ thể mình. Trái tim anh ta đập nhanh hơn. Bạn thử đoán xem chuyện gì sẽ xảy ra. Mọi thứ trên thế gian đối với anh ta dường như bị chậm lại đến kinh khủng, nếu không nói là dừng lại hoàn toàn. Nhà bác học ra đi dạo và bước thủng thẳng sao cho không khí bị cọ sát không làm cho bốc cháy chiếc quần đang mặc của anh ta. Phố xá chật cứng những người tượng. Đàn ông bị đông cứng vào thời điểm anh ta đảo mắt nhìn hai cô gái đi qua. Trong công viên một dàn nhạc đang chơi phát ra một thứ âm thanh chát chúa. Con ong vo vo trong không trung trong khi di chuyển với tốc độ của loài sên.

Chúng ta dẫn ra đây một thí nghiệm tưởng tượng. Giả sử rằng trong một thời điểm nhất định, mọi vật trong vũ trụ bắt đầu chuyển động chậm hơn hoặc nhanh hơn, hoặc giả hoàn toàn dừng lại một vài triệu năm, sau đó lại chuyển động trở lại, liệu ta có thể nhận thấy những thay đổi đó không? Không thể có một thí nghiệm nào để nhận chân điều ấy. Thời gian, tương tự như khoảng cách trong không gian là tương đối.

Nhiều khái niệm khác mà ta biết từ cuộc sống hàng ngày đều là tương đối. Chúng ta thử xem xét các khái niệm “lên trên” và “xuống dưới”. Nhiều thế kỷ qua loài người đã không dễ dàng hiểu được rằng con người ở phía bên kia của trái đất lại lộn xuống mà toàn bộ máu không bị đổ dồn lên đầu. Bây giờ thì cả trẻ em nhờ đó mà lần đầu tiên hiểu ra rằng trái đất có hình tròn.

Giá như trái đất làm bằng kính trong suốt và bạn có thể nhìn qua kính viễn vọng xuyên suốt, thì hẳn bạn đã nhìn thấy trên thực tế những con người đứng lộn đầu xuống chân chổng ngược lên, tức là trái với chiều đứng của bạn. Trên mặt đất hướng “lên trên” là hướng tính từ tâm của trái đất. Hướng “xuống dưới” là hướng về tâm của trái đất. Trong khoảng không giữa các vì sao tuyệt đối không có khái niệm trên và dưới vì ở đó không có hành tinh để có thể sử dụng “hệ thống đọc số”.

Ta hãy hình dung một con tàu vũ trụ dưới dạng một cái trống lớn đang chuyển động trong hệ mặt trời. Nó bị quay tạo ra lực ly tâm làm thành trường trong lúc nhân tạo. Khi ở bên trong con tàu, các nhà du hành vũ trụ có thể đi lại trên thành trong như đi trên nền nhà. Đối với họ “xuống dưới” cũng tức là từ phía tâm con tàu, còn “lên trên” tức là hướng về phía tâm, cũng tức là ngược hẳn với vị trí trên hành tinh đang quay. Như vậy, các bạn sẽ thấy rằng trong vũ trụ không hề có “phía trên” và “phía dưới” một cách tuyệt đốiên trên và xuống dưới chỉ là phương hướng đối với hướng hoạt động của trọng trường. Thật là vô nghĩa khi nói rằng lúc bạn ngủ toàn bộ vũ trụ lộn đầu đuôi, bởi vì làm gì có hệ thống đọc số nào để lý giải vấn đề vũ trụ có vị trí như thế nào.

Một kiểu thay đổi khác cũng có ý nghĩa tương đối, đó là sự thay đổi của đối tượng khi phản chiếu trong gương. Nếu như chữ R hoa in ngược lại ta sẽ được chữ Я, bạn có thể nhận ngay ra rằng đó là chữ phản chiếu trong gương của chữ R. Nhưng nếu toàn bộ vũ trụ (kể cả bạn) bất ngờ được phản chiếu qua gương thì bạn có cơ hội phát hiện những thay đổi tương tự.

Tất nhiên, nếu như chỉ có một người được phản chiếu qua gương (về điều này ) G. Well cũng đã viết một truyện có nhan đề Truyện về Pletttner, còn vũ trụ lại vẫn nguyên như cũ, tức là tưởng như mọi thứ đều đảo lộn. Muốn đọc sách anh ta cần phải đưa nó gần gương, giống như chàng Alice ở trong gương ranh mãnh đọc các chữ in ở trong gương thi phẩm Jabberwocky, trong khi vẫn giữ thi phẩm đó trước gương vậy. Nhưng nếu như tất cả đều đảo lộn thì không một thực nghiệm nào phát hiện sự thay đổi đó. Cũng thật phi lý mà nói rằng có sự biến đổi tương tự xảy ra, giống như khi nói rằng vũ trụ đã đảo lộn và tăng lên gấp đôi về kích thước.

Vậy thì chuyển động có tuyệt đối không? Có loại công cụ nào khả dĩ chứng minh được rằng đối tượng đang chuyển động hay đứng yên? Chuyển động vẫn còn là một phạm trù tương đối, khẳng định về nó chỉ có thể đem so sánh vị trí của một đối tượng này với vị trí của một đối tượng khác? Hoặc giả chuyển động hàm chứa một sự độc đáo nào đó khiến nó khác với các phạm trù liên quan được xem xét ở trên?

Bạn hãy dừng lại và suy nghĩ thêm về vấn đề này chính xác trước khi chuyển sang chương tiếp theo.

Chính là đáp ứng những vấn đề như vậy mà Anhxtanh đã phát triển thuyết tương đối của mình. Thuyết của ông mang tính cách mạng, trái ngược với “tư duy lành mạnh” khiến cho thậm chí đến tận lúc này có hàng trăm nhà khoa học (kể cả các nhà vật lý) vẫn gặp những khó khăn để hiểu những nguyên lý cơ bản của nó giống hệt như trẻ em khi muốn được lý giải tại sao những người ở nam ban cầu không rơi khỏi trái đất.

Nếu như bạn còn trẻ thì đó là lợi thế lớn so với các nhà khoa học này. Trong đầu óc của bạn vẫn còn chưa ăn sâu những tư duy kiểu đường mòn. Nhưng dù tuổi tác bạn như thế nào chăng nữa, nếu như bạn sẵn sàng rèn luyện trí lực của mình thì sẽ không còn lý do nào ngăn cản bạn có được cảm xúc như ở nhà trong thế giới mới mẻ kỳ lạ này của thuyết tương đối.

Chuyển động phải chăng là tương đối

Sau ít phút suy nghĩ, hẳn bạn sẽ nghiêng về câu trả lời: “Vâng, tất nhiên”. Bạn hãy hình dung một tàu hoả chuyển động lên phía bắc với vận tốc 60 km/giờ. Một người trong con tàu đi ngược lên phía nam với vận tốc 3km/giờ. Anh ta đang chuyển động theo hướng nào và vận tốc là bao nhiêu. Hoàn toàn rõ ràng là không thể trả lời câu hỏi không chỉ ra hệ thống tính toán. So với con tàu anh ta chuyển động về phía nam với vận tốc 3 km/giờ. So với trái đất, anh ta chuyển động về phía bắc với vận tốc 60 trừ 3, tức 57km/giờ.

Có thể nói rằng vận tốc của người so với trái đất (57 km/giờ) là vận tốc thực tuyệt đối được không? Không, bởi vì có cả những hệ thống khác có tỉ lệ còn lớn hơn. Bản thân trái đất đang chuyển động. Nó quay xung quanh trục của nó, đồng thời cũng chuyển động xung quanh mặt trời.

Mặt trời cùng các hành tinh khác chuyển động bên trong thiên hà. Thiên hà quay và chuyển động so với các thiên hà khác. Các thiên hà lại tạo thành các đoạn thiên hà chuyển động đối với nhau, không ai biết được các chuỗi chuyển động này trên thực tế có thể tiếp tục đến bao xa, không có một cách thức rõ ràng xác định chuyển động của một đối tượng nào đó; nói khác đi là không có một hệ thống đọc số cố định theo đó có thể đo được mọi chuyển động. Chuyển động và đứng yên, giống như lớn và nhỏ, nhanh và chậm, trên và dưới, trái và phải, như mọi người đã biết, đều là hoàn toàn tương đối. Không có cách nào đo chuyển động bất kì, ngoài việc so sánh chuyển động của nó với chuyển động của một đối tượng khác.

Thật là không đơn giản chút nào! Còn nếu như có thể giới hạn chỉ vào điều đã nói về tính tương đối của chuyển động thì hẳn đã không cần thiết để Anhxtanh sáng lập ra thuyết tương đối.

Nguyên do rắc rối như sau: có hai phương pháp rất đơn giản phát hiện chuyển động tuyệt đối. Một trong những phương pháp đó là sử dụng bản chất của ánh sáng, còn phương pháp khác là các hiện tượng khác nhau của quán tính xuất hiện khi thay đổi bởi đối tượng chuyển động của đường đạn hoặc vận tốc. Thuyết Tương đối hẹp của Anhxtanh có liên quan đến phương pháp đầu tiên, còn thuyết Tương đối tổng quát thì liên quan đến phương pháp thứ hai. Ở chương này và hai chương tiếp theo sẽ đề cập đến phương pháp đầu, ngõ hầu làm chìa khoá để hiểu về chuyển động tuyệt đối, tức là phương pháp vận dụng bản chất của ánh sáng.

Ở thế kỷ XIX, trước cả Anhxtanh, các nhà vật lý đã hình dung ra một không gian chứa đầy một loại chất đặc biệt, không chuyển động và không nhìn thấy, được gọi là ête. Thường người ta gọi nó là ête “mang ánh sáng”, ngụ ý rằng nó là vật mang sóng ánh sáng. Ete chất đầy toàn bộ vũ trụ. Nó thẩm thấu vào toàn bộ các thực thể vật chất.

Nếu như tất cả không khí đều lúc lắc dưới một quả chuông bằng kính đã bị chất đầy ête, làm sao mà ánh sáng có thể đi qua chân không được? Ánh sáng đó là chuyển động bằng sóng. Như vậy, hẳn là có sự xuất hiện các dao động đây. Bản thân ête cả khi tồn tại dao động hiếm khi (nếu không nói rằng không bao giờ) chuyển động so với các đối tượng vật chất, các vật càng chuyển động nhanh hơn qua nó tương tự như chuyển động của các dây bột trong nước. Chuyển động tuyệt đối của ngôi sao, của hành tinh hoặc của một đối tượng khác bất kỳ được đơn giản hoá (các nhà vật lý thời kỳ này tin tưởng như vậy), nếu chuyển động được xem xét với cả biển ête không nhìn thấy được.

Nhưng, các bạn sẽ hỏi rằng, nếu như ête là một thực thể phi vật chất không thể nhìn thấy được, không thể nghe thấy được, cảm thấy, ngửi hoặc nếm được vị của nó, thì làm sao có thể nghiên cứu chuyển động, chẳng hạn, của trái đất so với nó? Câu trả lời thật đơn giản. Người ta có thể đo được nhờ so sánh chuyển động của trái đất với chuyển động của chùm ánh sáng.

Muốn hiểu điều đó, ta hãy xem xét thời gian đối với bản chất của ánh sáng. Trên thực tế, ánh sáng chỉ là phần nhỏ bé nhìn thấy được của phổ bức xạ điện từ mà thành phần của nó gồm có sóng vô tuyến, sóng cực ngắn, tia hồng ngoại, tia tử ngoại và các tia gamma. Trong cuốn sách này, chúng ta sử dụng từ “ánh sáng” để chỉ một kiểu bất kỳ của bức xạ điện từ, bởi vì từ đó ngắn hơn từ “bức xạ điện từ”. ánh sáng là chuyển động mang tính sóng.

Suy nghĩ về sự chuyển động như vậy mà không suy nghĩ đồng thời về ête vật chất dường như đối với các nhà vật lý thời trước là thật phi lý, giống hệt như suy nghĩ về sóng trong nước mà không suy nghĩ về bản chất nước vậy.

Nếu như được bắn ra từ một máy bay phản lực đang chuyển động theo hướng chuyển động của máy bay, thì vận tốc của viên đạn đối với trái đất sẽ lớn hơn vận tốc của viên đạn bắn ra từ khẩu súng trường trên mặt đất, vận tốc của viên đạn đối với trái đất thu được bằng cách cộng vận tốc của máy bay và vận tốc của viên đạn. Trong trường hợp này, vận tốc của chùm sáng không phụ thuộc vào vật thể mà từ đó ánh sáng được phát ra – thực tế này đã được chứng minh bằng thực nghiệm vào cuối thế kỷ XIX và đầu thế kỷ XX và từ đó với nhiều lần được khẳng định. Lần kiểm tra cuối cùng được tiến hành vào năm 1955 bởi các nhà thiên văn Xô – Viết bằng cách sử dụng ánh sáng từ phía đối lập của mặt trời đang tự quay. Một rìa của Mặt Trời luôn chuyển động về phía chúng ta, còn rìa kia thì về phía đối lập. Đã tìm thấy rằng ánh sáng từ hai rìa đi tới trái đất với một vận tốc như nhau. Các thí nghiệm tương tự được tiến hành cả hàng chục năm trước với ánh sáng của các ngôi sao kép đang chuyển động. Mặc dù có sự chuyển động của nguồn sáng, vận tốc ánh sáng trong khoảng trống luôn như nhau, khoảng 300.000 km/giây.

Thử xem bằng cách nào mà sự kiện này tạo ra phương pháp cho nhà khoa học (chúng ta sẽ gọi họ là nhà quan sát) tính được vận tốc tuyệt đối. Nếu ánh sáng truyền bá qua môi trường ête không chuyển động, không thay đổi với một vận tốc nhất định và nếu vận tốc đó không phụ thuộc vào vận tốc chuyển động của nguồn sáng, thì vận tốc ánh sáng có thể dùng làm tiêu chuẩn để xác định chuyển động tuyệt đối của người quan sát.

Người quan trắc chuyển dịch cùng hướng với chùm sáng hẳn đã phát hiện ra rằng, chùm sáng đi qua anh ta với vận tốc nhỏ hơn c: người quan trắc đang chuyển dịch ngược với chùm sáng hẳn phải nhận thấy rằng chùm sáng đến gần anh ta với vận tốc lớn hơn c. Nói khác đi, kết quả đo vận tốc ánh sáng hẳn phải thay đổi tuỳ thuộc vào sự chuyển dịch của người quan trắc so với chùm sáng. Những thay đổi này hẳn đã phản ánh sự chuyển dịch tuyệt đối thực sự thông qua môi trường ête.

Khi mô tả hiện tượng này, các nhà vật lý thường sử dụng khái niệm “ngọn gió ête”. Để hiểu nội dung của thuật ngữ này, ta hãy nghiên cứu lại con tàu đang chuyển động. Chúng ta thấy rằng vận tốc của người đi trên con tàu là 3km/giờ luôn luôn là như nhau so với con tàu và không phụ thuộc vào việc anh ta đi về phía đầu máy hay về phía cuối con tàu. Điều đó sẽ đúng cả đối với vận tốc của sóng âm thanh bên trong toa tàu đóng kín. Âm thanh là chuyển động mang tính sóng được chuyển tải bởi các phần tử không khí. Bởi vì không khí có bên trong toa tàu, âm thanh ở bên trong toa sẽ truyền bá lên phía bắc cùng với vận tốc (so với toa tàu) như về phía nam.

Tình hình sẽ thay đổi nếu như chúng ta chuyển từ một toa hành khách khép kín sang một sân ga ngoài trời. Không khí trong toa ít bị giam hãm hơn. Nếu như con tàu chuyển động với vận tốc 60km/giờ, do sức cản của gió, vận tốc của âm thanh theo hướng từ cuối đến đầu toa sẽ nhỏ hơn bình thường. Vận tốc của âm thanh theo hướng ngược lại sẽ lớn hơn bình thường.

Các nhà vật lý của thế kỷ XIX đã tin rằng, môi trường ête cũng giống như không khí đang thổi trên sân ga. Vậy có gì khác đi không? Nếu ête không chuyển động thì bất kỳ một vật thể nào chuyển dịch trong đó đều bắt gặp ngọn gió ête thổi theo hướng ngược lại. Ánh sáng là chuyển động mang tính sóng trong môi trường ête không chuyển động. Ngọn gió ête, đương nhiên có ảnh hưởng đến vận tốc ánh sáng đo được từ một vật thể chuyển động.

Trái đất tồn tại trong không gian bằng cách quay xung quanh mặt trời với vận tốc khoảng 30km/giây. Chuyển động này theo các nhà vật lý, phải tạo ra ngọn gió ête thổi ngược chiều với trái đất trong khoảng trống giữa các nguyên tử với vận tốc 30km/giây. Muốn đo chuyển động tuyệt đối của trái đất (chuyển động đối với môi trường ête không di động), chỉ cần đo vận tốc, mà với vận tốc đó, ánh sáng đi qua một khoảng cách nhất định nào đó trên bề mặt trái đất. Nhờ ngọn gió ête, ánh sáng sẽ chuyển động nhanh hơn theo hướng này so với hướng khác. So sánh vận tốc của ánh sáng phát ra theo các hướng khác nhau là có thể tính toán được hướng tuyệt đối với vận tốc chuyển động của trái đất tại một thời điểm đã biết bất kỳ. Thí nghiệm này được đề xuất lần đầu tiên vào năm 1875, 4 năm trước khi Anhxtanh ra đời, bởi nhà vật lý vĩ đại người Scotland tên là J. C Macxoen.

Bình luận
Ads Footer